
ANALYTICAL SOLUTION OF THE PROBLEM ON THERMAL
SLIP OF SECOND ORDER FOR MOLECULAR GASES

V. N. Popov UDC 533.72

Results obtained using exact analytical methods in the problem on thermal slip of second order for molecular
gases with allowance for the rotational degrees of freedom of molecules have been presented. Numerical cal-
culations of the thermal-slip coefficient for a number of molecular gases have been carried out. The depend-
ence of the velocity of thermal slip of second order of a molecular gas on the Prandtl number has been
shown. The found value of the coefficient of thermal slip of second order theoretically confirms the existence
of negative (in the direction of the temperature gradient) thermophoresis for molecular gases.

Processes occurring in molecular gases are fundamentally of a more complex character than those in elemen-
tary (monatomic) gases [1]. In the latter case, the distribution function is a function of the coordinates of the centers
of inertia of gas molecules r′ and the velocities of their translational motion v. In the case of a molecular gas, the
dependence of the distribution function on the rotational and vibrational degrees of freedom of molecules is added.
The translational motion of molecules invariably follows the laws of the classical kinetic theory of gases. The rota-
tional degrees of freedom of gas molecules are described in an analogous manner (except for extremely low tempera-
tures). The vibrational degrees of freedom are invariably quantized. However, for a fairly wide range of temperatures
(about 10–1000 K), it may be considered that the vibrational degrees of freedom are unexcited and the gas molecules
are in the ground energy state [2].

A Boltzmann equation is used as the basic equation in kinetic theory of a rarefied gas [2]. In the case
where the vibrational degrees of freedom of the gas molecules are "frozen" and the rotational ones are described
based on the classical kinetic theory of gases, the Boltzmann steady-state equation, in the absence of mass forces,
has the form [1]

C∇f = ∫ (f ′f1 ′ − ff1) gdσd
3
v1dω1θdω1ϕ . (1)

Here the molecules of a polyatomic gas have been considered as rigid rotators having five degrees of free-
dom. It seems generally impossible to obtain the solution of (1) in view of the nonlinearity of the sevenfold collision
integral on the right-hand side of the equation. The main problem is in determining the differential cross section of
scattering of colliding gas molecules dσ. For monatomic gases, it has turned out to be quite efficient to interpret gas
molecules as hard spheres. Such an approach made it possible to compute analytically a number of bracket integrals
and to solve numerous boundary-value problems of kinetic theory of a rarefied gas based on the method of half-space
moments [3]. However, such an interpretation is unlikely to apply to a molecular gas. Allowance for the internal de-
grees of freedom of gas molecules by using the model of rough spheres and ovaloids appears equally unsuitable (see,
e.g., [4] and the references therein). By virtue of this fact, the use of model kinetic equations (1) which make it pos-
sible to elucidate the structure of slow flows of rarefied molecular gases along hard surfaces is topical as before.

The work presented seeks to construct the exact analytical solution of the problem on thermal slip of second
order as applied to molecular gases. The BGK (Bhatnagar, Gross, and Krook) model of the Boltzmann equation, which
has been generalized in [5] to the case of allowance for the rotational degrees of freedom of gas molecules, is used
as the basic equation. The gas molecules are assumed to be diffusely reflected by the surface.

Journal of Engineering Physics and Thermophysics, Vol. 79, No. 3, 2006

M. V. Lomonosov Pomor’e State University, 4 Lomonosov Ave., Arkhangel’sk, 163002, Russia; email: popov.
vasily@pomorsu.ru. Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 79, No. 3, pp. 190–194, May–June, 2006.
Original article submitted November 10, 2004; revision submitted April 14, 2005.

1062-0125/06/7903-0619 2006 Springer Science+Business Media, Inc. 619



The problem on thermal slip of second order has repeatedly been considered by different authors for mona-
tomic gases. This problem for monatomic gases was analyzed by numerical methods in [6–8]. The BGK model of the
Boltzmann kinetic equation was used in [6], the ellipsoidal-statistical model was employed in [7], and the linearized
Boltzmann equation for elastic spheres was used in [8]. In [9], the problem was solved by the method of half-space
moments based on the linearized Boltzmann equation for rigid-sphere molecules. Exact analytical solutions of the prob-
lem in question were constructed in [10–12] respectively with the use of the BGK and ellipsoidal-statistical models of
the Boltzmann kinetic equation as well as the Williams model. This problem was solved for the first time for polya-
tomic gases.

Formulation of the Problem. Derivation of the Basic Equations. Let us consider a spherical aerosol particle
suspended in a rarefied molecular gas irregular in temperature. We tie a spherical coordinate system whose polar axis
is guided along the temperature gradient in an unperturbed part of the gas flow to the center of a particle. We assume
that the component (normal to the particle surface) of the temperature gradient ∂T ⁄ ∂r slowly varies along the surface
and is not constant. Thus, the quantity ∂2T ⁄ ∂r∂θ will be nonzero in the problem, which leads to the so-called thermal
slip of second order.

For small temperature gradients, the velocity of thermal slip of second order is determined by the expression [9]

U0
 ′ = KT β Kn νg 

1
Ts

 
∂2

T

∂r∂θ
 . (2)

The quantity KT for molecular gases has been found in [5] (KT = 0.7662/Pr). Thus, the problem formulated above is
reduced to finding β.

The temperature gradient will be considered to be small. Then the problem allows linearization and the distri-
bution function of gas particles by coordinate and velocity may be written in the form f = f (0)[1 + Y(r, C, ν)], where
r = (Pr√π /2) (r′ ⁄ λ), λ = νg√πm ⁄ 2kBTs , C = v√m ⁄ 2kBTs , ν = ω√J ⁄ 2kBTs , and Y(r, C, ν) is the solution of the equa-
tion [5] written in the spherical system whose origin coincides with the center of the spherical particle:
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(3)

Here l = 2 and dΩ = 2π−3 ⁄ 2 exp (−C2 − ν2)νdνd3C for a diatomic gas, l = 5/2 and dΩ = 2π−3 exp (−C2 − ν2)
d3νd3C for an N atomic gas (N ≥ 3), and k = 2Kn/(√π  Pr), Kn = λ ⁄ R ′.

Following [6], we seek Y(r, C, ν) in the form of an expansion in parameter k:

Y (r, C, ν) = Y1 (r, C, ν) + kY2 (r, C, ν) + ... . (4)

Taking account of (4), we also expand the hydrodynamic characteristics of the gas flow, in particular, the component
of the mass velocity Uθ tangential to the particle surface, in k:

Uθ = Uθ
(1)

 + kUθ
(2)

 .

Substituting (4) into (3) and equating the terms of k, we arrive at an equation for finding the function Y2(x, C, ν):

Cr 
∂Y2

∂x
 + Y2 (x, C, ν) = ∫ k (C, ν, C′, ν′) Y2 (x, C′, ν′) dΩ − 
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2
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∂Y1

∂θ
 , (5)

Y1 (x, C, ν) = Z1 (x, µ) + γ (C2
 + ν2

 − l − 1 ⁄ 2) Z2 (x, µ) 
1
Ts

 
∂T
∂r

 , (6)

γ2 = 1 ⁄ (l + 1 ⁄ 2) ,   Z (x, µ) = ∫ 
0

+∞

exp (− x ⁄ η) F (η, µ) A (η) dη ,

F (η, µ) = ηP 
1

η − µ
 E + exp (η2) Ω (µ) δ (η − µ) ,   x = r − R ,   µ = Cr ,

Ω (η) = λ (η) E + 
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exp (− µ2) dµ

µ − z
 ,

A (η) = [A1 (η), A2 (η)]t
 ,   Z (x, µ) = [Z1 (x, µ), Z2 (x, µ)]t

 .

The solution of Eq. (5) is sought in the form

Y2 (x, C, ν) = Cθϕ (x, µ) + Cθ (ν
2
 − l + 1) ϕ1 (x, µ) + ∑ 

k

bk (Cθ, Cϕ) φk (x, µ, ν) , (7)

where Cθ, together with bk(Cθ, Cϕ), form a complete system of orthogonal polynomials in the velocity space. By the

orthogonality of the polynomials g(C) and f(C) in the velocity space we mean the equality of the integral ∫ exp

(−C2)g(C)f(C)dC to zero.
Let us substitute (6) and (7) into (5). In the case of the diatomic gas we multiply the equality obtained by

ν exp (−ν2 − Cθ
2 − Cϕ

2) and integrate for ν going from 0 to +∞ and for Cθ and Cϕ going from −∞ to +∞. In the case
of the polyatomic gas, the equality obtained will be multiplied by exp (−ν2 − Cθ

2 − Cϕ
2) and will be integrated for ν,

Cθ, and Cϕ going from −∞ to +∞. In both cases we arrive at the same system for finding ϕ(x, µ) and ϕ1(x, µ):

µ 
∂ϕ
∂x

 + ϕ (x, µ) = 
1
√π

  ∫ 
−∞

+ϕ

 exp (− τ2) ϕ (x, τ) dτ − kT [Z1 (x, µ) + γ (µ2
 + 1 ⁄ 2) Z2 (x, µ)] , (8)

µ 
∂ϕ1

∂x
 + ϕ1 (x, µ) = − kTZ2 (x, µ) ,   kT = 

1

Ts
 
∂2

T

∂r∂θ
 .

The gas molecules are assumed to be reflected from the surface of an aerosol particle diffusely. Then bound-
ary conditions for the functions ϕ(x, µ) and ϕ1(x, µ) sought will be written in the form

ϕ(0, µ) = —2U0 ,   µ > 0 , (9)

ϕ (+ ∞, µ) = 0 , (10)

ϕ1 (0, µ) = 0 ,   µ > 0 ,   ϕ1 (+ ∞, µ) = 0 .
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Since the slip velocity U0 sought is involved only in the boundary conditions for the function ϕ(x, µ), in what follows
we may restrict ourselves to solution of Eq. (8) with boundary conditions (9) and (10).

Calculation of the Velocity of Thermal Slip of Second Order. We rewrite expressions (8) and (9) in vector
form for an unknown column vector Φ(x, µ) = [ϕ(x, µ), 0]t:

µ 
∂Φ
∂x

 + Φ (x, µ) = 
1
√π

  ∫ 
−∞

+∞

 exp (− τ2) Φ (x, τ) dτ − kTK (µ) Z (x, µ) , (11)

Φ (0, µ) = [− 2U0, 0]
t
 ,   µ > 0 ,   Φ (+ ∞, µ) = [0, 0]

t
 ,   K (µ) = 




1
0

     γ (µ
2
 + 1 ⁄ 2)
0




 .

The general solution of (11) will be given without derivation:

Φ (x, µ) = B0 + B1 (x − µ) + ∫ 
0

+∞

exp (− x ⁄ η) Ψ (η, µ) B (η) dη +

+ kTK (µ) ∫ 
0

+∞

exp (− x ⁄ η) ηP 
1

η − µ
 F (η, µ) A (η) dη ,

Ψ (η, µ) = ηP 
1

η − µ
 + exp (η2) λ (µ) δ (η − µ) .

The solution constructed for B0 = [0, 0]t and B1[0, 0]t satisfies boundary condition (10). We find the value of
an unknown parameter U0 with account for boundary condition (9) using the theory of boundary-value problems:

U0 = − 
kT

2
 [εn − Q1 + 2Q3 − (Q2 − 1 ⁄ 2) εT] . (12)

Here Q1 = −1.01619, Q2 = −1.2663, and Q3 = −1.8207 [13]. The parameters εT and εn for the Boltzmann-equation
model used in this work have been computed in [5]. We have εT = 1.2168 and εn = −0.6716 for diatomic gases and
εT = 1.1914 and εn = −0.6525 for polyatomic gases. Substituting the above values into (12), we find U0 = 0.5738kT
for diatomic gases and U0 = 0.5867kT for polyatomic gases.

In the case of a monatomic gas, we have obtained (in [10]) the velocity of thermal slip of second order based
on the BGK model of the Boltzmann equation:

U0 = − 
kT

2
 [− εn − Q1 + 2Q3 − (Q2 + 1 ⁄ 2) εT] .

Here the values of the parameters εT = 1.3013 and εn = −0.5633 are computed based on the results obtained in [14].
Thus, for monatomic gases the BGK model yields the value of the velocity of thermal slip of second order U0 =
0.5323kT.

Passing to dimensional quantities in (12) and using (2), we find β = 1.6934/Pr for diatomic gases and β =
1.7299/Pr for polyatomic gases. Thus, e.g., the coefficient of thermal slip of second order for chlorine Cl2 (Pr = 0.64)
and carbon monoxide CO (Pr = 0.74) is equal to 2.6459 and 2.2884 respectively. For methane CH4 (Pr = 0.75), sulfur
dioxide SO2 (Pr = 0.85), and ammonia NH3 (Pr = 0.93), it is equal, respectively, to 2.3065, 2.0352, and 1.8201. Thus,
the coefficient of thermal slip of second order for polyatomic gases (unlike monatomic ones) depends on the Prandtl
number. For monatomic gases we have β = 2.3524 [10].

The result obtained in the work presented makes it possible to calculate the velocity of thermophoresis of
high-thermal-conductivity aerosol particles for low values of the Knudsen number. Taking into account that [9]
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UT
′  = τνg Kn ∇T ,   τ = − 2KT (CT + β − βBa) ,

where, according to [5], CT = 2εT/(√π  Pr) and βBa = 3.8662/Pr2, we find τ = 1.2257/ Pr2 for the diatomic gas and
τ = 1.2137/Pr2 for the polyatomic gas. Thus, in particular, we have τ = 2.9924 for Cl2 and τ = 2.2383 for CO. For
CH4, SO2, and NH3, the coefficient τ is equal to 2.1577, 1.6799, and 1.4032 respectively. For the monatomic gas we
have obtained τ = 2.8544 with the use of the BGK model. It is noteworthy that the value of the coefficient β that has
been found for the gases indicated above theoretically confirms the existence of negative (in the direction of the tem-
perature gradient) thermophoresis for molecular gases.

Thus, in the work, we have computed the velocity of thermal slip of second order of a rarefied polyatomic
gas with the use of exact analytical methods based on a generalization of the BGK model of the Boltzmann kinetic
equation to the case of allowance for the rotational degrees of freedom of the gas molecules. It has been established
that, for polyatomic gases, the coefficient of thermal slip of second order depends on the Prandtl number. The found
value of the coefficient of thermal slip of second order theoretically confirms the existence of negative (in the direc-
tion of the temperature gradient) thermophoresis for molecular gases.

NOTATION

A1(η) and A2(η), coefficients in the expansion of the solution of the problem on temperature jump at the
boundary of a hard plane surface in the eigenvectors of a continuous spectrum; C, dimensionless translational velocity
of gas molecules; CT, coefficient of temperature jump of a rarefied gas at the boundary of a hard plane surface; E,
unit matrix; f (0), equilibrium distribution function in the gas volume at a large distance from the surface of an aerosol
particle; f, f1, and f ′, f1

 ′, distribution functions of molecules before and after the collision; F(η, µ), eigenvectors of a
continuous spectrum from the problem on temperature jump; g, impact parameter; J, moment of inertia of gas mole-
cules, kg⋅m2; Kn, Knudsen number; kB, Boltzmann constant; KT, coefficient of thermal slip of a rarefied gas along a
hard plane surface; kT, second mixed derivative of temperature, referred to the surface temperature; K(µ), matrix from
the problem on thermal slip of second order; m, mass of gas molecules, kg; N, number of atoms in a molecule; Pr,
Prandtl number; Px−1, distribution in the sense of the principal value in integrating x−1; Q1, Q2, and Q3, Loyalka in-
tegrals; R′, dimensional radius of an aerosol particle, m; R, dimensionless radius of an aerosol particle; r, radial coor-
dinate of the spherical coordinate system; r′, dimensional radius vector, m; r, dimensionless radius vector; T, gas
temperature, K; Ts, particle-surface temperature, K; U′, dimensional mass velocity of the gas, m/sec; UT

′ , velocity of
thermophoresis of high-thermal-conductivity aerosol particles, m; U0

′ , dimensional velocity of thermal slip of second
order, m/sec; U0, dimensionless velocity of thermal slip of second order; v, dimensional translational velocity of gas
molecules, m/sec; v1, velocity of the incident molecule before the collision; Y(r, C, ν), correction allowing for the de-
viation of the distribution function in the Knudsen layer from the distribution function in the gas volume; Z1(x, µ) and
Z2(x, µ), functions constructed in the problem on temperature jump at the boundary of a hard plane surface; β, coef-
ficient of thermal slip of second order; βBa, Barnett-slip coefficient; δ(x), Dirac delta function; θ, azimuthal angle of
the spherical coordinate system; λ, mean free path of gas molecules, m; λ(z), Cercignani dispersion function; ν, dimen-
sional rotational velocity of gas molecules; νg, kinematic viscosity of the gas; ω, dimensional rotational velocity of gas
molecules, rad/sec; Ω(η), dispersion matrix; dσ, differential scattering cross section of colliding gas molecules; ω1θ and
ω1ϕ, projections of the angular rotational velocity of the incident molecule before the collision; εT, temperature jump
on the particle surface; εn, parameter found in the problem on temperature jump from the surface-impermeability con-
dition for gas molecules; Ψ(η, µ), eigenvectors of a continuous spectrum from the problem on thermal slip of second
order; t, transposition. Subscripts: g, gas; n, number concentration; r, θ, ϕ, projections onto the axes of the spherical
coordinate system; s, sphere surface.

REFERENCES

1. V. M. Zhdanov and M. Ya. Alievskii, Transport and Relaxation Processes in Molecular Gases [in Russian],
Nauka, Moscow (1989).

2. E. M. Lifshits and L. P. Pitaevskii, Physical Kinetics [in Russian], Nauka, Moscow (1979).

623



3. E. I. Alekhin and Yu. I. Yalamov, Mathematical Principles of Solution of the Boundary-Value Problems of the
Kinetic Theory of Multicomponent Gases near the Condensed Phase [in Russian], MOPI im. N. K. Krupskoi,
Moscow (1991).

4. M. N. Kogan, Dynamics of a Rarefied Gas. The Kinetic Theory [in Russian], Nauka, Moscow (1967).
5. A. V. Latyshev and A. A. Yushkanov, Smolukhovskii problem for molecular gases with account for the coef-

ficients of accommodation of translational and rotational energies of molecules, Prikl. Mat. Mekh., 66, Issue 5,
845–854 (2002).

6. Y. Sone and K. Aoki, in: Proc. 10th Int. Symp. on Rarefied Gas Dynamics, Aspen, Colo, 1976, Vol. 51, Pt. 1,
Academic Press, New York (1977), pp. 417–433.

7. Takeo Soga, A kinetic analysis of thermal force on a spherical particle of high thermal conductivity in mona-
tomic gas, Phys. Fluids, 29, No. 4, 976–985 (1986).

8. T. Ohwada and Y. Sone, Analysis of thermal stress slip flow and negative thermophoresis using the Boltzmann
equation for hard-sphere molecules, Eur. J. Mech. B, Fluids, No. 11, 389–414 (1992).

9. E. G. Mayasov, A. A. Yushkanov, and Yu. I. Yalamov, Thermophoresis of a nonvolatile spherical particle in a
rarefied gas at small Knudsen numbers, Pis’ma Zh. Tekh. Fiz., 14, No. 6, 498–502 (1988).

10. V. N. Popov, Analytical solution of the problem on thermal slip of second order, Pis’ma Zh. Tekh. Fiz., 28,
Issue 19, 10–16 (2002).

11. A. V. Latyshev, V. N. Popov, and A. A. Yushkanov, Calculation of the velocity of rarefied-gas slip due to the
nonuniformity of the temperature distribution in the Knudsen layer, Sib. Zh. Industr. Matem., 6, No. 1 (13), 60–
71 (2003).

12. A. V. Latyshev, V. N. Popov, and A. A. Yushkanov, Calculation of the velocity of thermal slip of second
order by a model kinetic equation with a variable frequency of collisions, Teplofiz. Vys. Temp., No. 6, 132–136
(2003).

13. S. K. Loyalka, The Qn and Fn integrals for the BGK model, Transp. Theory Statist. Phys., 4, 55–65 (1975).
14. A. V. Latyshev, Application of the Case method to solution of a linearized kinetic BGK equation in the prob-

lem on temperature jump, Prikl. Mat. Mekh., 54, No. 4, 581–586 (1990).

624


